小升初网

小学数学必备的解题思路与解题技巧

2018-03-02 08:40:16
来源:小升初网  

学数学最重要的其实是思维知识,因为数学是综合了分析,分类,归纳,推理等多种学习手段的学科。今天给大家介绍5个比较综合的思维方式,希望同学们能掌握。内容有些难,但是对于小学高年级的学生还是有研究的必要的。

66bf00041c4bcbc87c6e.jpg

一、直接思路

“直接思路”是解题中的常规思路。它一般是通过分析、综合、归纳等方法,直接找到解题的途径。

【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。

例1:兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?

分析(按顺向综合思路探索):

1、根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?

可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。

2、根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?

可以求出哥哥每分钟能追上弟弟多少米。

3、通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?

可以求出哥哥赶上弟弟所需的时间。

4、狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?

狗跑的时间与哥哥追上弟弟所用的时间是相同的。

5、已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?

可以求出这时狗总共跑了多少距离。

这个分析思路可以用下图(图2.1)表示:

66bd00045fa8ab31f49a.jpg

例2:下面图形(图2.2)中有多少条线段?

66c20001bf021c6a32b2.jpg

分析(按顺向综合思路探索):

我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。

1、左端点是A的线段有哪些?

有 AB AC AD AE AF AG共 6条。

2、左端点是B的线段有哪些?

有 BC、BD、BE、BF、BG共5条。

3、左端点是C的线段有哪些?

有CD、CE、CF、CG共4条。

4、左端点是D的线段有哪些?

有DE、DF、DG共3条。

5、左端点是E的线段有哪些?

有EF、EG共2条。

6、左端点是F的线段有哪些?

有FG共1条。

然后把这些线段加起来就是所要求的线段。

二、逆向分析思路

从题目的问题入手,根据数量关系,找出解这个问题所需要的两个条件,然后把其中的一个(或两个)未知的条件作为要解决的问题,再找出解这一个(或两个)问题所需的条件;这样逐步逆推,直到所找的条件在题里都是已知的为止,这就是逆向分析思路,运用这种思路解题的方法叫分析法。

例1:两只船分别从上游的A地和下游的B地同时相向而行,水的流速为每分钟30米,两船在静水中的速度都是每分钟600米,有一天,两船又分别从A、B两地同时相向而行,但这次水流速度为平时的2倍,所以两船相遇的地点比平时相遇点相差60米,求A、B两地间的距离。

分析(用逆向分析思路考虑):

1、要求A、B两地间的距离,根据题意需要什么条件?

需要知道两船的速度和与两船相遇的时间。

2、要求两船的速度和,必要什么条件?

两船分别的速度各是多少。题中已告之在静水中两船都是每分钟600米,那么不论其水速是否改变,其速度和均为(600+600)米,这是因为顺水船速为:船速+水速,逆水船速为:船速-水速,故顺水船速与逆水船速的和为:船速+水速+船速-水速=2个船速(实为船在静水中的速度)。

3、要求相遇的时间,根据题意要什么条件?

两次相遇的时间因为距离相同,速度和相同,所以应该是相等的,这就是说,尽管水流的速度第二次比第一次每分钟增加了30米,仍不会改变相遇时间,只是改变了相遇地点:偏离原相遇点60米,由此可知两船相遇的时间为60÷30=2(小时)。

此分析思路可以用下图(图2.3)表示:

66bd00045fa7e00e319d.jpg

例2:五环图由内径为4,外径为5的五个圆环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等(如图2.4),已知五个圆环盖住的总面积是122.5,求每个小曲边四边形的面积(圆周率π取3.14)

66bf00041c4866cb7708.jpg

分析(仍用逆向分析思路探索):

1、要求每个小曲边四边形的面积,根据题意必须知道什么条件?

曲边四边形的面积,没有公式可求,但若知道8个小曲边四边形的总面积,则只要用8个曲边四边形总面积除以8,就可以得到每个小曲边四边形的面积了。

2、要求8个小曲边四边形的总面积,根据题意需要什么条件?

8个小曲边四边形恰好是圆环面积两两相交重叠一次的部分,因此只要把五个圆环的总面积减去五个圆环盖住的总面积就可以了。

3、要求五个圆环的总面积,根据题意需要什么条件?

求出一个圆环的面积,然后乘以5,就是五个圆环的总面积。

4、要求每个圆环的面积,需要什么条件?

已知圆环的内径(4)和外径(5),然后按圆环面积公式求就是了。

圆环面积公式为:

S圆环=π(R2-r2)

=π(R+r)(R-r)

小学数学不定方程解题技巧与解题思路(例题及答案解析)

小学数学不定方程解题技巧与解题思路(例题及答案解析)

2018-02-23

小升初数学陷阱题(解题思路及破解方法)

小升初数学陷阱题(解题思路及破解方法)

2018-02-23

小学数学归一问题解题技巧及思路(例题及答案)

小学数学归一问题解题技巧及思路(例题及答案)

2018-02-22